
这里没有高深的理论,只有和你一样关心科技和生活的普通人。每一期,我用最简单的语言聊聊新技术、行业故事,还有那些让人会心一笑的小发现。关注《猿来如此》,和我一起,慢慢变好。
| Publishes | Daily | Episodes | 73 | Founded | 3 years ago |
|---|---|---|---|---|---|
| Language | Number of Listeners | Category | Technology |

本期播客介绍了 MiniMax-M2.1 模型在编程能力方面的重大突破,重点阐述了该模型如何超越传统的 SWE-Bench 评估标准。开发者通过构建覆盖十余种主流编程语言的大规模多语言训练系统,显著提升了模型在复杂企业级开发中的表现。除了修复漏洞,该模型在自动化测试生成、代码性能优化以及代码评审等多样化任务中也展现出卓越实力。为了确保在不同开发工具下的通用性,模型特别强化了长指令遵循和对各种智能体架构的适应能力。展望未来,研发团队计划通过强化学习规模化和构建编程世界模型,进一步优化开发者的交互体... more
本期播客汇总了 Hacker News 社区成员在 2025 年分享的各类副业项目及其盈利情况。文中展示了多元化的商业模式,涵盖了从在线传真服务和数据库客户端等实用工具,到线下美食俱乐部及手工定制唱片等创意产品。许多开发者分享了他们如何利用 AI 技术、SEO 优化或开源社区赞助来实现每月超过 500 美元的营收目标。除了成功的经验,讨论还涉及了获客挑战、定价策略以及平衡全职工作与个人项目之间的个人感悟。这组资料生动勾勒出当代独立开发者如何通过解决细分痛点,将技术热情转化为可持续的商业价值。
本期播客来自 OpenRouter 和 a16z 的实证研究,基于对该平台超过 100 万亿个代币的大型语言模型(LLM)交互数据进行分析。研究指出,自从 o1 等推理模型发布以来,LLM 的使用范式已发生重大转变,向着多步骤、复杂化的代理式推理工作流程演进,体现在工具调用和更长的序列长度上。在应用类别方面,编程已成为最主要的专业工作负载,而创意角色扮演则在开源模型的使用量中占据了最大份额。报告观察到一个结构性的多模型生态系统,开源模型生态正在迅速扩张并变得多元化,尤其在亚洲地区和中国开发者的推... more
本期播客概述了关于人工智能现状与未来发展方向的深刻对话。讨论的核心在于当前 大型语言模型 (LLM) 在评估中的优异表现与其对经济影响的滞后之间存在的费解脱节,并认为随着数据的限制,单纯依靠 规模化 (scaling) 的时代正走向终结。对话重点强调需要重新回归 研究时代 (age of research),以解决模型在 泛化能力 (generalization) 和 样本效率 (sample efficiency) 方面的根本缺陷,这是目前 AI 与人类学习能力相比的不足之处。通过借鉴人类 情... more
How this podcast ranks in the Apple Podcasts, Spotify and YouTube charts.
Apple Podcasts | #107 |
Listeners, social reach, demographics and more for this podcast.
| Listeners per Episode | Gender Skew | Location | |||
|---|---|---|---|---|---|
| Interests | Professions | Age Range | |||
| Household Income | Social Media Reach | ||||
Rephonic provides a wide range of podcast stats for 猿来如此. We scanned the web and collated all of the information that we could find in our comprehensive podcast database. See how many people listen to 猿来如此 and access YouTube viewership numbers, download stats, audience demographics, chart rankings, ratings, reviews and more.
Rephonic provides a full set of podcast information for three million podcasts, including the number of listeners. View further listenership figures for 猿来如此, including podcast download numbers and subscriber numbers, so you can make better decisions about which podcasts to sponsor or be a guest on. You will need to upgrade your account to access this premium data.
Rephonic provides comprehensive predictive audience data for 猿来如此, including gender skew, age, country, political leaning, income, professions, education level, and interests. You can access these listener demographics by upgrading your account.
To see how many followers or subscribers 猿来如此 has on Spotify and other platforms such as Castbox and Podcast Addict, simply upgrade your account. You'll also find viewership figures for their YouTube channel if they have one.
These podcasts share a similar audience with 猿来如此:
猿来如此 launched 3 years ago and published 73 episodes to date. You can find more information about this podcast including rankings, audience demographics and engagement in our podcast database.
Our systems regularly scour the web to find email addresses and social media links for this podcast. We scanned the web and collated all of the contact information that we could find in our podcast database. But in the unlikely event that you can't find what you're looking for, our concierge service lets you request our research team to source better contacts for you.
Rephonic pulls ratings and reviews for 猿来如此 from multiple sources, including Spotify, Apple Podcasts, Castbox, and Podcast Addict.
View all the reviews in one place instead of visiting each platform individually and use this information to decide if a show is worth pitching or not.
Rephonic provides full transcripts for episodes of 猿来如此. Search within each transcript for your keywords, whether they be topics, brands or people, and figure out if it's worth pitching as a guest or sponsor. You can even set-up alerts to get notified when your keywords are mentioned.